

Rust RTIC@Grepit 2021

Per Lindgren PhD, Professor
per.lindgren@ltu.se

Luleå University of Technology
per.lindgren@grepit.se

Director of RnD Grepit AB

Andreas Lundqvist
andreas.lundqvist@grepit.se

COO Grepit AB

Grand challenge - Short Term

Grand challenge – Long Term

By the year 2035, spending on IoT
hardware and services will reach
a trillion dollars per annum.

This level of investment supports our
view that a trillion IoT devices will
be produced within the next twenty
years.

Source: ARM

Grand challenge - Design

Grand challenge - Design

● Robustness, Reliability & Security
● Efficiency (CPU, Memory, Power, Bandwidth)
● Cost (Design & Maintainance)

Rust RTIC

The Rust language
- Performance
- Reliability
- Productivity

- Efficient Scheduling
- Safe Concurrency
- Easy to program

RTIC model

Rust RTIC
- IoT devices
- Robotics
- Automotive

The Rust language

● Performance
– Typically on par or better than C/C++
– “Zero-cost” abstractions (code & memory OH optimized out)

● Reliability
– Memory safety (compile time checking + built in assertions)
– Well defined behavior (unlike C/C++ with lots of UD)

● Productivity
– Best in class ecosystem with version handling etc.

Most loved language among developers since its release!

Rust Memory Safety

● Builds on linear type theory
– Philip Wadler, “Linear Types can change the World!”, 1990
– Each value must be used once (and is consumed when used)

● More permissive, affine type system
– Each value may be used once, and is consumed when used or

goes out of scope
– Each value (v:T) has a single owner

Accesses by reference under restrictions (Rust aliasing rules)
● multiple `& v:T` references may co-exist, or
● only a single (unique) `& mut v:T` reference is allowed

Rust Memory Safety

● The `borrow checker` enforces the aliasing rules.
● Rust ensures all references to be live and point to valid data.

(Similar to C++ RAII but fully enforced at compile time.)

● In effect, Rust programs passing compilation are memory safe,
unless for code explicitly marked `unsafe`.

● `unsafe` still implies all Rust invariants besides allowing:
– raw pointer dereferencing, and
– calling other `unsafe` code.

Rust Memory Safety

● What about Out Of Memory (OOM)?
– OOM is not a concept of the Rust language!
– The Rust standard library (std) has a default `allocator`:

● System will `panic` on OOM, which is “sound”
(does not break memory safety).

● However, it breaks reliability
(up to the user/OS to deal with).

● Recovering may be very hard/impossible and thus a no-go for reliable
safety critical applications.

Rust Memory Safety

● What about Stack Memory Overruns (SMO)?
– SMO is not a concept of the Rust language!
– A Rust run-time system may protect stack frames,

and catch overruns (does not break “soundness”)
– However, it breaks reliability

(hard to recover, similar to OOM)
● In essence:

– Memory Safe by Construction
– OOM and SMO handled by sacrificing reliability

(Not perfect, but far better than C/C++)

And now, the problem with
Threads...

... well might look cute but ...

The problem with Threads...

● Deceivingly simple, it is very easy to make mistakes ...
● ... forget to lock (race-condition)
● ... forget to unlock (live/dead-locks)
● ... cyclic resource dependencies (dead-locks)
● Complexity

– Huge APIs, see e.g.,
http://man7.org/linux/man-pages/man7/pthreads.7.html

– What does locking a Mutex really mean?
● Depends on OS, Scheduling Policy, how the Mutex was created, etc.
● ... in the end who knows what the cat brought in ...

http://man7.org/linux/man-pages/man7/pthreads.7.html

RTIC Model
A “Thread free” solution

● Shared Resources
● Concurrent Tasks

– Run-to-end semantics
– Resources can be locked only in LIFO order

(nested critical sections)

Resources {
shared : T,

}
...

#[task(resources = [shared])]
fn task1(mut cx: task1::Context) {
 cx.resources.shared.lock(|shared| {

// shared is of type &mut T
 *shared = ...;
 });
}

Background
Stack Resource Policy (SRP)

● Resurces are
– Accessed as named critical sections (lock on entry/unlock on exit)
– Restricts concurrency to ensure unique ownership

● Tasks are
– sequences of operations with run-to-completion semantics
– only allowed to “claim” resources in a nested fashion

Yes, the Last In First Out (LIFO) is indeed a stack,
hence the name Stack Resource policy

This is what makes SPR unique!

Background
SRP Key features

● Preemtive, static and dynamic (e.g., Eearliest Deadline First),
scheduling of single-core systems with shared resources

● Race- and deadlock-free execution

● Bounded priority inversion

a task t is blocked only by the single longest critical section for any resource
with a ceiling higher than the priority of t

● Memory efficient (executes on a single shared stack)

● Established theory for response time, overall schedulability ant total stack analysis

Background
SRP Requirements

● SRP requires static analysis of the set of Tasks & Resources
– Ensure LIFO ordering of resource access
– Compute the (static) ceiling for each resource

the static priority ceiling for a resource r is computed as
the maximum priority for any task t that access r

SRP Is Well Known but...

● The programmer is used to threads, so could we translate a thread model to
SRP?

This is however problematic:
– threads can typically be created/destroyed on the fly
– lots of synchronization primitives, mutex, semaphores, conditional variables, etc.

Without a model of the program it is not easy or even possible

● In pratice SRP based scheduling is not that common, an existing solution is
the OSEK SLOTH-kernel, building on the AUTOSAR Task/Resource model

What is cortex-m-rtic?

● Single-core scheduler for the Cortex-M family of MCUs

● Strong guarantees to:
– Race free execution (property of SRP)

unbreakable: ensured by the design resources are accissible only when claimed
– Deadlock free execution (property of SRP)

● Integrated with the cortex-m ecosystem
– cortex-m, cortex-m-rt, etc.
– svd2rust generated peripheral access
– embedded-hal implementations and support crates
– cargo

What is cortex-m-rtic?

● Other cortex-m-rtic properties
– Memory and CPU Efficient execution with predicable overhead

● Tasks/interrupts scheduled directly by the hardware (NVIC)
zero memory and CPU overhead

● Entering/exiting critical sections requires just a few machine instructions and a single
byte stack memory for each nesting

● Message passing using lock-free zero cost abstractions

● Other SRP properties
– Bounded priority inversion
– Single stack execution
– Methods to response time analysis, overall schedulability, total stack usage

Under the hood...

● The app procedural macro
– analyses the set of tasks and resources
– computes resource ceiling values
– generates glue code for scheduling and resource management

Resources and Priorities

● Assign task priories inverse to deadlines (DM scheduling)

● Locks are always wait free (never cause a context switch)

● Lock/unlock only a few machine instructions
(single write to HW register or Cortex M3 and above)

● Locks are optimized out where possible
(so you can write your code generic to priority
assignments, and still have zero-cost access)

Supporting tools

● cargo-call-stack
– static call graph reconstruction and stack estimation

● cargo-klee (experimental)
– symbolic execution for Rust programs to prove

● programs to be free of panic!
● Input/Output equivalence between implementations
● verify properties, e.g., safety, liveness, partial correctness

Total memory safety

● Recall Out Of Memory (OOM) and Stack Overflow is not
covered by the Rust language/model
– Heapless is a library for dynamic memory backed by static

allocation (memory safe and panic free)
– Cargo-call-stack gives worst case stack behavior per task

(total stack usage can be bounded)
– Used together to obtain “total memory safety”

Everything in Rust RTIC?

● May not be possible

– Auto generated code (e.g., MATLAB)

– Black box software components

– Lack of pre-certified software components

– Or simply, too high effort

● Luckily Rust provides excellent FFI support

– Build system integration

– Zero-cost (no added overhead)

– By careful design memory safety remains
(even improves memory safety of the exteral code base)

Legacy code integration

● FFI not restricted to C/C++, any lang with compatible ABI possible

● Tooling

– rust-bindgen, cbindgen
● Automatically generates Rust FFI bindings to/from C (and some C++)
● RAW/unsafe interface to external code

– Rust ships with an LLVM based toolchain
● LLVM Link time optimization possible (LTO)
● LLVM tools typically work out the box

– Sanitizers, etc.

Memory safe
Legacy code integration

● External code stateless
– Rust/RTIC has ownership of (memory) resources

(External code passed reference to locked resource)

● External code stateful
– Wrap component into RTIC resource to ensure safe state access

● External code stateful and “self scheduled” (e.g., capturing interrupts)
– External code needs to be trusted
– Allows for pre-certified software components (e.g., radio driver)

Example

RTICC Driver

receive

task
Interrupt

spi

Rust-shim

HW

Example

RTICC Driver

receive

task
Interrupt

spi

Rust-shim

HW

Example

RTICC Driver

receive

task
Interrupt

spi

Rust-shim

HW

Example

RTICC Driver

receive

task
Interrupt

spi

Rust-shim

HW

Rust RTIC – In Production@Grepit

● Products on the market since 2017
– 2017 GemPen - Gemstone Analysis Pen
– 2018 Nexus - data acqusition system
– 2019 X-Ray Geocore scanner (OreExplore)
– 2020 Zpark - Electrical Vehicle Charger

Grepit competences and services

●Competences
–Hardware (ASIC/FPGA/PCB, assembly etc.)
–Sofware (Rust/C/C++/Python/Web services etc.)

●Grepit provides expert consulting services

●Customer development projects

●Complete system deliveries

Rust RTIC – In Production@Grepit

● Demo of Rust RTIC running on Zpark
– LoRa Radio protocol implementation in C
– Radio module implemented in Rust RTIC integrating C code

Rust RTIC – Related references

● RTIC: A Zero-Cost Abstraction for Memory Safe Concurrency
https://www.youtube.com/watch?v=rYXy8dXYTNg

● RTIC: Real Time Interrupt driven Concurrency
https://www.youtube.com/watch?v=saNdh0m_qHc

● An Overview of the Embedded Rust Ecosystem
https://www.youtube.com/watch?v=vLYit_HHPaY

● Considering Rust
https://www.youtube.com/watch?v=DnT-LUQgc7s

https://www.youtube.com/watch?v=rYXy8dXYTNg
https://www.youtube.com/watch?v=saNdh0m_qHc
https://www.youtube.com/watch?v=vLYit_HHPaY
https://www.youtube.com/watch?v=DnT-LUQgc7s

Rust RTIC

Open source project
– https://crates.io/crates/cortex-m-rtic

Download/publishing

– https://rtic.rs

Docs/book

– https://github.com/rtic-rs
github development organization/team

https://crates.io/crates/cortex-m-rtic
https://rtic.rs/
https://github.com/rtic-rs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

