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Grand challenge - Short Term



  

Grand challenge – Long Term 

By the year 2035, spending on IoT 
hardware and services will reach 
a trillion dollars per annum. 

This level of investment supports our 
view that a trillion IoT devices will 
be produced within the next twenty 
years.

Source: ARM



  

Grand challenge - Design 



  

Grand challenge - Design

● Robustness, Reliability & Security
● Efficiency (CPU, Memory, Power, Bandwidth)
● Cost (Design & Maintainance)



  

Rust RTIC

The Rust language
- Performance
- Reliability
- Productivity

- Efficient Scheduling
- Safe Concurrency
- Easy to program

RTIC model

Rust RTIC
- IoT devices
- Robotics
- Automotive



  

The Rust language

● Performance
– Typically on par or better than C/C++
– “Zero-cost” abstractions (code & memory OH optimized out)

● Reliability
– Memory safety (compile time checking + built in assertions)
– Well defined behavior (unlike C/C++ with lots of UD)

● Productivity
– Best in class ecosystem with version handling etc.

Most loved language among developers since its release!



  

Rust Memory Safety

● Builds on linear type theory 
– Philip Wadler, “Linear Types can change the World!”, 1990
– Each value must be used once (and is consumed when used)

● More permissive, affine type system
– Each value may be used once, and is consumed when used or 

goes out of scope
– Each value (v:T) has a single owner

Accesses by reference under restrictions (Rust aliasing rules) 
● multiple `& v:T` references may co-exist, or
● only a single (unique) `& mut v:T` reference is allowed  



  

Rust Memory Safety

● The `borrow checker` enforces the aliasing rules.
● Rust ensures all references to be live and point to valid data.

(Similar to C++ RAII but fully enforced at compile time.)

● In effect, Rust programs passing compilation are memory safe, 
unless for code explicitly marked `unsafe`.

● `unsafe` still implies all Rust invariants besides allowing:
– raw pointer dereferencing, and 
– calling other `unsafe` code.

 



  

Rust Memory Safety

● What about Out Of Memory (OOM)?
– OOM is not a concept of the Rust language!
– The Rust standard library (std) has a default `allocator`: 

● System will `panic` on OOM, which is “sound” 
(does not break memory safety).

● However, it breaks reliability 
(up to the user/OS to deal with).

● Recovering may be very hard/impossible and thus a no-go for reliable 
safety critical applications. 



  

Rust Memory Safety

● What about Stack Memory Overruns (SMO)?
– SMO is not a concept of the Rust language!
– A Rust run-time system may protect stack frames, 

and catch overruns (does not break “soundness”)
– However, it breaks reliability

(hard to recover, similar to OOM)
● In essence:

– Memory Safe by Construction
– OOM and SMO handled by sacrificing reliability

(Not perfect, but far better than C/C++)



  

And now, the problem with 
Threads...

... well might look cute but ...



  

The problem with Threads...

● Deceivingly simple, it is very easy to make mistakes ...
● ... forget to lock (race-condition)
● ... forget to unlock (live/dead-locks)
● ... cyclic resource dependencies (dead-locks)
● Complexity

– Huge APIs, see e.g., 
http://man7.org/linux/man-pages/man7/pthreads.7.html

– What does locking a Mutex really mean?
● Depends on OS, Scheduling Policy, how the Mutex was created, etc.
● ... in the end who knows what the cat brought in ...

http://man7.org/linux/man-pages/man7/pthreads.7.html


  

RTIC Model
A “Thread free” solution

● Shared Resources
● Concurrent Tasks

– Run-to-end semantics
– Resources can be locked only in LIFO order 

(nested critical sections)

Resources {
shared : T,

}
...

#[task(resources = [shared])]
fn task1(mut cx: task1::Context) {
    cx.resources.shared.lock(|shared| {

// shared is of type &mut T
        *shared = ...;          
    });
}



  

Background 
Stack Resource Policy (SRP)

● Resurces are 
– Accessed as named critical sections (lock on entry/unlock on exit)
– Restricts concurrency to ensure unique ownership   

● Tasks are
– sequences of operations with run-to-completion semantics
– only allowed to “claim” resources in a nested fashion 

Yes, the Last In First Out (LIFO) is indeed a stack, 
hence the name Stack Resource policy 

This is what makes SPR unique!    



  

Background
SRP Key features

● Preemtive, static and dynamic (e.g., Eearliest Deadline First), 
scheduling of single-core systems with shared resources

● Race- and deadlock-free execution

● Bounded priority inversion

a task t is blocked only by the single longest critical section for any resource 
with a ceiling higher than the priority of t

● Memory efficient (executes on a single shared stack)

● Established theory for response time, overall schedulability ant total stack analysis 



  

Background
SRP Requirements

● SRP requires static analysis of the set of Tasks & Resources
– Ensure LIFO ordering of resource access
– Compute the (static) ceiling for each resource

the static priority ceiling for a resource r is computed as 
the maximum priority for any task t that access r



  

SRP Is Well Known but...

● The programmer is used to threads, so could we translate a thread model to 
SRP? 

This is however problematic:
– threads can typically be created/destroyed on the fly
– lots of synchronization primitives, mutex, semaphores, conditional variables, etc.  

Without a model of the program it is not easy or even possible

● In pratice SRP based scheduling is not that common, an existing solution is
the OSEK SLOTH-kernel, building on the AUTOSAR Task/Resource model  



  

What is cortex-m-rtic?

● Single-core scheduler for the Cortex-M family of MCUs

● Strong guarantees to:
– Race free execution (property of  SRP) 

unbreakable: ensured by the design resources are accissible only when claimed
– Deadlock free execution (property of SRP)

● Integrated with the cortex-m ecosystem
– cortex-m, cortex-m-rt, etc. 
– svd2rust generated peripheral access
– embedded-hal implementations and support crates
– cargo



  

What is cortex-m-rtic?

● Other cortex-m-rtic properties
– Memory and CPU Efficient execution with predicable overhead

● Tasks/interrupts scheduled directly by the hardware (NVIC)
zero memory and CPU overhead

● Entering/exiting critical sections requires just a few machine instructions and a single 
byte stack memory for each nesting 

● Message passing using lock-free zero cost abstractions 

● Other SRP properties
– Bounded priority inversion
– Single stack execution 
– Methods to response time analysis, overall schedulability, total stack usage 



  

Under the hood...

● The app procedural macro
– analyses the set of tasks and resources 
– computes resource ceiling values
– generates glue code for scheduling and resource management



  

Resources and Priorities

● Assign task priories inverse to deadlines (DM scheduling)

● Locks are always wait free (never cause a context switch)

● Lock/unlock only a few machine instructions
(single write to HW register or Cortex M3 and above)

● Locks are optimized out where possible
(so you can write your code generic to priority 
assignments, and still have zero-cost access)



  

Supporting tools

● cargo-call-stack
– static call graph reconstruction and stack estimation

● cargo-klee (experimental)
– symbolic execution for Rust programs to prove

● programs to be free of panic! 
● Input/Output equivalence between implementations
● verify properties, e.g., safety, liveness, partial correctness

  



  

Total memory safety

● Recall Out Of Memory (OOM) and Stack Overflow is not 
covered by the Rust language/model
– Heapless is a library for dynamic memory backed by static 

allocation (memory safe and panic free)
– Cargo-call-stack gives worst case stack behavior per task 

(total stack usage can be bounded)
– Used together to obtain “total memory safety”

  



  

Everything in Rust RTIC? 

● May not be possible

– Auto generated code (e.g., MATLAB)

– Black box software components

– Lack of pre-certified software components

– Or simply, too high effort

● Luckily Rust provides excellent FFI support

– Build system integration

– Zero-cost (no added overhead)

– By careful design memory safety remains
(even improves memory safety of the exteral code base)



  

Legacy code integration 

● FFI not restricted to C/C++, any lang with compatible ABI possible

● Tooling

– rust-bindgen, cbindgen
● Automatically generates Rust FFI bindings to/from C (and some C++)
● RAW/unsafe interface to external code

– Rust ships with an LLVM based toolchain
● LLVM Link time optimization possible (LTO)
● LLVM tools typically work out the box

– Sanitizers, etc.  



  

Memory safe
Legacy code integration 

● External code stateless
– Rust/RTIC has ownership of (memory) resources

(External code passed reference to locked resource)

● External code stateful 
– Wrap component into RTIC resource to ensure safe state access

● External code stateful and “self scheduled” (e.g., capturing interrupts)
– External code needs to be trusted
– Allows for pre-certified software components (e.g., radio driver)



  

Example 

RTICC Driver

receive

task
Interrupt

spi

Rust-shim

HW
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Rust RTIC – In Production@Grepit

● Products on the market since 2017 
– 2017 GemPen  - Gemstone Analysis Pen
– 2018 Nexus - data acqusition system 
– 2019 X-Ray Geocore scanner (OreExplore)
– 2020 Zpark - Electrical Vehicle Charger



  

Grepit competences and services

●Competences
–Hardware (ASIC/FPGA/PCB, assembly etc.)
–Sofware (Rust/C/C++/Python/Web services etc.)

●Grepit provides expert consulting services

●Customer development projects

●Complete system deliveries



  

Rust RTIC – In Production@Grepit

● Demo of Rust RTIC running on Zpark
– LoRa Radio protocol implementation in C
– Radio module implemented in Rust RTIC integrating C code



  

Rust RTIC – Related references

● RTIC: A Zero-Cost Abstraction for Memory Safe Concurrency
https://www.youtube.com/watch?v=rYXy8dXYTNg

● RTIC: Real Time Interrupt driven Concurrency
https://www.youtube.com/watch?v=saNdh0m_qHc

● An Overview of the Embedded Rust Ecosystem
https://www.youtube.com/watch?v=vLYit_HHPaY

● Considering Rust
https://www.youtube.com/watch?v=DnT-LUQgc7s

https://www.youtube.com/watch?v=rYXy8dXYTNg
https://www.youtube.com/watch?v=saNdh0m_qHc
https://www.youtube.com/watch?v=vLYit_HHPaY
https://www.youtube.com/watch?v=DnT-LUQgc7s


  

Rust RTIC 

Open source project
– https://crates.io/crates/cortex-m-rtic

Download/publishing

– https://rtic.rs

Docs/book 

– https://github.com/rtic-rs
github development organization/team

https://crates.io/crates/cortex-m-rtic
https://rtic.rs/
https://github.com/rtic-rs
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